[LỜI GIẢI] Trong mặt phẳng Oxy cho hai đường tròn ( C1 ):( x - 1 )^2 + ( y - 3 )^2 = 1;( C2 ):( x - 4 )^2 + ( y - Tự Học 365
LUYỆN TẬP TRẮC NGHIỆM 50000+ CÂU HỎI

DÀNH CHO MỌI LỚP 6 ĐẾN 12

TRUY CẬP NGAY
XEM CHI TIẾT

Trong mặt phẳng Oxy cho hai đường tròn ( C1 ):( x - 1 )^2 + ( y - 3 )^2 = 1;( C2 ):( x - 4 )^2 + ( y

Trong mặt phẳng Oxy cho hai đường tròn ( C1 ):( x - 1 )^2 + ( y - 3 )^2 = 1;( C2 ):( x - 4 )^2 + ( y

Câu hỏi

Nhận biết

Trong mặt phẳng \(Oxy,\) cho hai đường tròn \(\left( {{C_1}} \right):{\left( {x - 1} \right)^2} + {\left( {y - 3} \right)^2} = 1;\,\)\(\left( {{C_2}} \right):{\left( {x - 4} \right)^2} + {\left( {y - 3} \right)^2} = 4.\) Tìm tâm vị tự ngoài của hai đường tròn.


Đáp án đúng: A

Lời giải của Tự Học 365

Giải chi tiết:

\(\left( {{C_1}} \right):{\left( {x - 1} \right)^2} + {\left( {y - 3} \right)^2} = 1\) \( \Rightarrow \) tâm \({I_1}\left( {3; - 1} \right)\), bán kinh \({R_1} = 1\)

\(\left( {{C_2}} \right):{\left( {x - 4} \right)^2} + {\left( {y - 3} \right)^2} = 4\)\( \Rightarrow \) tâm \({I_2}\left( {4;3} \right)\), bán kinh \({R_2} = 2\)

Gọi \(I\) là tâm vị tự của 2 đường tròn với \(I\left( {x;y} \right)\)

Ta có: \(\left\{ \begin{array}{l}\overrightarrow {I\,{I_1}} \left( {1 - x;3 - y} \right)\\\overrightarrow {I\,{I_2}} \left( {4 - x;3 - y} \right)\end{array} \right.\)

\(k = \dfrac{{{R_1}}}{{{R_2}}} = \dfrac{1}{2}\) (\(k > 0\) vì đây là vị tự ngoài)

\(\begin{array}{l} \Rightarrow \overrightarrow {I\,{I_1}} = \dfrac{1}{2}\overrightarrow {I\,{I_2}} \\ \Leftrightarrow \left\{ \begin{array}{l}1 - x = \dfrac{1}{2}\left( {4 - x} \right)\\3 - y = \dfrac{1}{2}\left( {3 - y} \right)\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = - 2\\y = 3\end{array} \right.\end{array}\)

Vậy vị tự tâm ngoài \(\left( { - 2;3} \right)\).

Chọn A.

Ý kiến của bạn