Tính\(\mathop {\lim }\limits_{x \to - \infty } \left( {\sqrt {{x^2} + 1} + x - 1} \right)\)bằng?
Giải chi tiết:
\(\begin{array}{l}\mathop {\lim }\limits_{x \to - \infty } \left( {\sqrt {{x^2} + 1} + x - 1} \right) = \mathop {\lim }\limits_{x \to - \infty } \frac{{\left( {\sqrt {{x^2} + 1} + x - 1} \right)\left( {\sqrt {{x^2} + 1} - x + 1} \right)}}{{\sqrt {{x^2} + 1} - x + 1}} = \mathop {\lim }\limits_{x \to - \infty } \frac{{{x^2} + 1 - {{(x - 1)}^2}}}{{\sqrt {{x^2} + 1} - x + 1}}\\\mathop {\lim }\limits_{x \to - \infty } \frac{{{x^2} + 1 - {x^2} + 2x - 1}}{{\sqrt {{x^2} + 1} - x + 1}} = \mathop {\lim }\limits_{x \to - \infty } \frac{{2x}}{{\sqrt {{x^2} + 1} - x + 1}} = \mathop {\lim }\limits_{x \to - \infty } \frac{{\frac{{2x}}{x}}}{{\frac{{\sqrt {{x^2} + 1} }}{x} - \frac{x}{x} + \frac{1}{x}}} = \mathop {\lim }\limits_{x \to - \infty } \frac{2}{{ - \sqrt {1 + \frac{1}{{{x^2}}}} - 1 + \frac{1}{x}}}\\ = \frac{2}{{ - 1 - 1 + 0}} = - 1\end{array}\)
Chọn: A.