Tính tổng sau: \(S = \frac{1}{2}C_n^0 - \frac{1}{4}C_n^1 + \frac{1}{6}C_n^3 - \frac{1}{8}C_n^4 + ... + \frac{{{{( - 1)}^n}}}{{2(n + 1)}}C_n^n\)
Giải chi tiết:
Ta có: \(S = \frac{1}{2}\left( {C_n^0 - \frac{1}{2}C_n^1 + \frac{1}{3}C_n^2 - ... + \frac{{{{( - 1)}^n}}}{{n + 1}}C_n^n} \right)\)
Vì \(\frac{{{{( - 1)}^k}}}{{k + 1}}C_n^k = \frac{{{{( - 1)}^k}}}{{k + 1}}\frac{{n!}}{{(n - k)!k!}} = \frac{{{{( - 1)}^k}}}{{(k + 1)!}}\frac{{(n + 1)!}}{{\left[ {(n + 1) - (k + 1)} \right]!(n + 1)}} = \frac{{{{( - 1)}^k}}}{{n + 1}}C_{n + 1}^{k + 1}\)
nên: \(S = \frac{1}{{2(n + 1)}}\sum\limits_{k = 0}^n {{{( - 1)}^k}C_{n + 1}^{k + 1}} = \frac{{ - 1}}{{2(n + 1)}}\left( {\sum\limits_{k = 0}^{n + 1} {{{( - 1)}^k}C_{n + 1}^k} - C_{n + 1}^0} \right) = \frac{1}{{2(n + 1)}}\)
Chọn A