Tính \(\mathop {\lim }\limits_{x \to - \infty } x\sqrt {\frac{{3x + 2}}{{2{x^3} + {x^2} - 1}}} \)bằng?
Giải chi tiết:
\(\begin{array}{l}\mathop {\lim }\limits_{x \to - \infty } x\sqrt {\frac{{3x + 2}}{{2{x^3} + {x^2} - 1}}} = \mathop {\lim }\limits_{x \to - \infty } \left( { - \sqrt {\frac{{{x^2}\left( {3x + 2} \right)}}{{2{x^3} + {x^2} - 1}}} } \right) = \mathop {\lim }\limits_{x \to - \infty } \left( { - \sqrt {\frac{{3{x^3} + 2{x^2}}}{{2{x^3} + {x^2} - 1}}} } \right)\\= \mathop {\lim }\limits_{x \to - \infty } \left( { - \sqrt {\frac{{3 + \frac{2}{x}}}{{2 + \frac{1}{x} - \frac{1}{{{x^3}}}}}} } \right) = - \sqrt {\frac{3}{2}}\end{array}\)
Chọn: A.