Tính \(\mathop {\lim }\limits_{x \to a} \frac{{\sin x - \sin a}}{{x - a}}\) có kết quả bằng
Giải chi tiết:
Ta có: \(\mathop {\lim }\limits_{x \to a} \frac{{\sin x - \sin a}}{{x - a}} = \mathop {\lim }\limits_{x \to a} \frac{{2\cos \frac{{x + a}}{2}\sin \frac{{x - a}}{2}}}{{2.\frac{{x - a}}{2}}} = \mathop {\lim }\limits_{x \to a} \left( {\frac{{\sin \frac{{x - a}}{2}}}{{\frac{{x - a}}{2}}}.\cos \frac{{x + a}}{2}} \right)\) .
Mà \(\mathop {\lim }\limits_{x \to a} \frac{{\sin \frac{{x - a}}{2}}}{{\frac{{x - a}}{2}}} = 1\) và \(\mathop {\lim }\limits_{x \to a} \cos \frac{{x + a}}{2} = \cos a\).
Vậy \(\mathop {\lim }\limits_{x \to a} \frac{{\sin x - \sin a}}{{x - a}} = \cos a\).
Chọn D.