Tính giới hạn \(\mathop {\lim }\limits_{x \to 1} \dfrac{{\sqrt {x + 3} - 2\sqrt x }}{{x - 1}}.\)
Giải chi tiết:
\(\begin{array}{l}\,\,\,\,\,\mathop {\lim }\limits_{x \to 1} \dfrac{{\sqrt {x + 3} - 2\sqrt x }}{{x - 1}}.\\ = \mathop {\lim }\limits_{x \to 1} \dfrac{{\sqrt {x + 3} - 2 + 2 - 2\sqrt x }}{{x - 1}}\\ = \mathop {\lim }\limits_{x \to 1} \dfrac{{\sqrt {x + 3} - 2}}{{x - 1}} + \mathop {\lim }\limits_{x \to 1} \dfrac{{2 - 2\sqrt x }}{{x - 1}}\\ = \mathop {\lim }\limits_{x \to 1} \dfrac{{\left( {\sqrt {x + 3} - 2} \right)\left( {\sqrt {x + 3} + 2} \right)}}{{\left( {x - 1} \right)\left( {\sqrt {x + 3} + 2} \right)}} + \mathop {\lim }\limits_{x \to 1} \dfrac{{2\left( {1 - \sqrt x } \right)}}{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 1} \right)}}\\ = \mathop {\lim }\limits_{x \to 1} \dfrac{{x + 3 - 4}}{{\left( {x - 1} \right)\left( {\sqrt {x + 3} + 2} \right)}} - \mathop {\lim }\limits_{x \to 1} \dfrac{2}{{\sqrt x + 1}}\\ = \mathop {\lim }\limits_{x \to 1} \dfrac{1}{{\sqrt {x + 3} + 2}} - \mathop {\lim }\limits_{x \to 1} \dfrac{2}{{\sqrt x + 1}}\\ = \dfrac{1}{{2 + 2}} - \dfrac{2}{{1 + 1}} = - \dfrac{3}{4}\end{array}\)
Vậy \(\mathop {\lim }\limits_{x \to 1} \dfrac{{\sqrt {x + 3} - 2\sqrt x }}{{x - 1}} = - \dfrac{3}{4}\).
Chọn C.