Tìm tất cả các số thực m sao cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l}\dfrac{{\sqrt {2x + 5} - 3}}{{x - 2}}\,\,{\rm{ }}khi\,\,x > 2\\x - m\,\,{\rm{ }}khi\,\,\,x \le 2\end{array} \right.\,\,\) liên tục tại điểm \(x = 2\).
Giải chi tiết:
Ta có:
\(\begin{array}{l}\mathop {\lim }\limits_{x \to {2^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {2^ + }} \dfrac{{\sqrt {2x + 5} - 3}}{{x - 2}} = \mathop {\lim }\limits_{x \to {2^ + }} \dfrac{{2x + 5 - 9}}{{\left( {x - 2} \right)\left( {\sqrt {2x + 5} + 3} \right)}}\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \mathop {\lim }\limits_{x \to {2^ + }} \dfrac{{2x - 4}}{{\left( {x - 2} \right)\left( {\sqrt {2x + 5} + 3} \right)}} = \mathop {\lim }\limits_{x \to {2^ + }} \dfrac{2}{{\sqrt {2x + 5} + 3}} = \dfrac{1}{3}\\\mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {2^ - }} \left( {x - m} \right) = 2 - m = f\left( 2 \right)\end{array}\)
Để hàm số liên tục tại \(x = 2 \Leftrightarrow \mathop {\lim }\limits_{x \to {2^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right) = f\left( 2 \right)\).
\( \Leftrightarrow 2 - m = \dfrac{1}{3} \Leftrightarrow m = \dfrac{5}{3}\).
Vậy \(m = \dfrac{5}{3}\).