[LỜI GIẢI] Tìm số phức có modun nhỏ nhất sao cho: |z| = |< - Tự Học 365
LUYỆN TẬP TRẮC NGHIỆM 50000+ CÂU HỎI

DÀNH CHO MỌI LỚP 6 ĐẾN 12

TRUY CẬP NGAY
XEM CHI TIẾT

Tìm số phức có modun nhỏ nhất sao cho: |z| = |<

Tìm số phức có modun nhỏ nhất sao cho: |z| = |<

Câu hỏi

Nhận biết

Tìm số phức có modun nhỏ nhất sao cho: |z| = |\bar{z} - 3 + 4i|


Đáp án đúng: D

Lời giải của Tự Học 365

Giải chi tiết:

Gọi số phức z có dạng z = x + yi, với x, y ∈ R

Khi đó |z| = | - 3 + 4i|

⇔ |x + yi| = |x – yi – 3 + 4i| ⇔ |x + yi| = |x – 3 + (4 – y)i|

⇔ x2 + y2 = (x – 3)2 + (4 – y)2 ⇔ 6x + 8y = 25. <=> y =

|z| = =

Số phức z có modun nhỏ nhất đạt được khi x = và y = 2

Vậy z = + 2i

Ý kiến của bạn