[LỜI GIẢI] Tìm số hạng không chứa x trong khai triển ( xy^2 - 1 xy )^8. - Tự Học 365
LUYỆN TẬP TRẮC NGHIỆM 50000+ CÂU HỎI

DÀNH CHO MỌI LỚP 6 ĐẾN 12

TRUY CẬP NGAY
XEM CHI TIẾT

Tìm số hạng không chứa x trong khai triển ( xy^2 - 1 xy )^8.

Tìm số hạng không chứa x trong khai triển ( xy^2 - 1 xy )^8.

Câu hỏi

Nhận biết

Tìm số hạng không chứa \(x\) trong khai triển \({\left( {x{y^2} - {1 \over {xy}}} \right)^8}.\)


Đáp án đúng: A

Lời giải của Tự Học 365

Giải chi tiết:

Theo khai triển nhị thức Newton, ta có

\({\left( {x{y^2} - {1 \over {xy}}} \right)^8} = \sum\limits_{k\, = \,0}^8 {C_8^k} .{\left( {x{y^2}} \right)^{8 - k}}.{\left( { - {1 \over {xy}}} \right)^k} = \sum\limits_{k = 0}^8 {C_8^k} .{x^{8 - k}}.{y^{16 - 2k}}.{\left( { - 1} \right)^k}.{\left( {xy} \right)^{ - k}} = \sum\limits_{k = 0}^8 {C_8^k} .{\left( { - 1} \right)^k}.{x^{8 - 2k}}.{y^{16 - 3k}}.\)

Số hạng không chứa \(x\) ứng với \(8 - 2k = 0 \Leftrightarrow k = 4\,\,\buildrel {} \over \longrightarrow \,\,\) Số hạng cần tìm là \(C_8^4.{\left( { - \,1} \right)^4}.{y^4} = 70{y^4}.\)

Chọn A

Ý kiến của bạn