Phương trình \( \tan x= \cot x \) có nghiệm là:
Giải chi tiết:
ĐKXĐ: \(\left\{ \begin{array}{l}\sin x \ne 0\\\cos x \ne 0\end{array} \right. \Rightarrow \sin 2x \ne 0 \Leftrightarrow 2x \ne k\pi \Leftrightarrow x \ne \frac{{k\pi }}{2}\,\,\left( {k \in Z} \right)\)
\(\begin{array}{l}\tan x = \cot x \Leftrightarrow \tan x = \frac{1}{{\tan x}} \Leftrightarrow {\tan ^2}x = 1\\ \Leftrightarrow \left[ \begin{array}{l}\tan x = 1\\\tan x = - 1\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{4} + k\pi \\x = - \frac{\pi }{4} + k\pi \end{array} \right. \Rightarrow x = \frac{\pi }{4} + k\frac{\pi }{2}\,\left( {k \in Z} \right)\end{array}\)
Chọn C.