Phương trình \(\sin x + \cos x = \sqrt 2 \sin 5x\) có nghiệm là:
Giải chi tiết:
\(\begin{array}{l}\,\,\,\,\,\,\,\sin x + \cos x = \sqrt 2 \sin 5x \Leftrightarrow \sqrt 2 \sin \left( {x + \frac{\pi }{4}} \right) = \sqrt 2 \sin 5x\\ \Leftrightarrow \sin \left( {x + \frac{\pi }{4}} \right) = \sin 5x \Leftrightarrow \left[ \begin{array}{l}5x = x + \frac{\pi }{4} + k2\pi \\5x = \pi - x - \frac{\pi }{4} + k2\pi \end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}4x = \frac{\pi }{4} + k2\pi \\6x = \frac{{3\pi }}{4} + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{{16}} + \frac{{k\pi }}{2}\\x = \frac{\pi }{8} + \frac{{k\pi }}{3}\end{array} \right.,\;\;k \in \mathbb{Z}.\end{array}\)
Chọn C.