Phương trình \(\sin 8x - \cos 6x = \sqrt 3 \left( {\sin 6x + \cos 8x} \right)\) có bao nhiêu nghiệm thuộc \(\left[ {0;2\pi } \right]\) thõa mãn \(\sin x > 0\)?
Giải chi tiết:
\(\begin{array}{l}\;\;\;\;\;\sin 8x - \cos 6x = \sqrt 3 \left( {\sin 6x + \cos 8x} \right) \Leftrightarrow \sin 8x - \sqrt 3 \cos 8x = \sqrt 3 \sin 6x + \cos 6x\\ \Leftrightarrow \sin \left( {8x - \frac{\pi }{3}} \right) = \sin \left( {6x + \frac{\pi }{6}} \right) \Leftrightarrow \left[ \begin{array}{l}8x - \frac{\pi }{3} = 6x + \frac{\pi }{6} + k2\pi \\8x - \frac{\pi }{3} = \pi - \left( {6x + \frac{\pi }{6}} \right) + m2\pi \end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}2x = \frac{\pi }{2} + k2\pi \\14x = \frac{{7\pi }}{6} + m2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{4} + k\pi \\x = \frac{\pi }{{12}} + \frac{{m\pi }}{7}\end{array} \right.\,\,\,\left( {k,\;m \in \mathbb{Z}} \right).\end{array}\)
Với \(x \in \left[ {0;2\pi } \right],\;\,\sin x > 0\) thì \(x \in \left( {0;\pi } \right)\), ta xét:
\(\left[ \begin{array}{l}0 < \frac{\pi }{4} + k\pi < \pi \Leftrightarrow - \frac{1}{4} < k < \frac{3}{4} \Leftrightarrow k \in \left\{ 0 \right\}\\0 < \frac{\pi }{{12}} + \frac{{m\pi }}{7} < \pi \Leftrightarrow - \frac{7}{{12}} < m < \frac{{77}}{{12}} \approx 6,41 \Leftrightarrow m \in \left\{ {0;\;1;\;2;\;3;\;4;\;5;\;6} \right\}\end{array} \right.\)
Phương trình có 8 nghiệm thõa mãn.
Chọn C.