Phương trình \({\sin ^2}x + {\sin ^2}2x = 1\) có bao nhiêu nghiệm dương bé hơn 100?
Giải chi tiết:
\(\begin{array}{l}\,\,\,\,\,\,\,{\sin ^2}x + {\sin ^2}2x = 1\\ \Leftrightarrow \frac{{1 - \cos 2x}}{2} + 1 - {\cos ^2}2x = 1\\ \Leftrightarrow {\cos ^2}2x + \frac{1}{2}\cos 2x - \frac{1}{2} = 0\\ \Leftrightarrow \left[ \begin{array}{l}\cos 2x = - 1\\\cos 2x = \frac{1}{2}\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}2x = \pi + k2\pi \\2x = \frac{\pi }{3} + m2\pi \\2x = - \frac{\pi }{3} + n2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{2} + k\pi \\x = \frac{\pi }{6} + m\pi \\x = - \frac{\pi }{6} + n\pi \end{array} \right.,k,\;m,\;n \in \mathbb{Z}.\end{array}\)
Ta có: \(\left[ \begin{array}{l}0 < \frac{\pi }{2} + k\pi < 100 \Leftrightarrow - 0,5 < k < 31,33 \Rightarrow k \in \left\{ {0;\;1;\;2;...;\;31} \right\}\\0 < \frac{\pi }{6} + m\pi < 100 \Leftrightarrow - 0,167 < m < 31,66 \Rightarrow m \in \left\{ {0;\;1;\;2;...;\;31} \right\}\\0 < - \frac{\pi }{6} + n\pi < 100 \Leftrightarrow 0,167 < n < 31,99 \Rightarrow n \in \left\{ {1;\;2;...;\;31} \right\}\end{array} \right.\)
Có tất cá: \(32 + 32 + 31 = 95\) nghiệm thỏa mãn.
Chọn A.