Phương trình \(\cos x + \cos \frac{x}{2} + 1 = 0\) có nghiệm là:
Giải chi tiết:
\(\begin{array}{l}\,\,\,\,\,\,\cos x + \cos \frac{x}{2} + 1 = 0\\ \Leftrightarrow 2{\cos ^2}\frac{x}{2} - 1 + \cos \frac{x}{2} + 1 = 0\; \Leftrightarrow \cos \frac{x}{2}\left( {2\cos \frac{x}{2} + 1} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}\cos \frac{x}{2} = 0\\\cos \frac{x}{2} = - \frac{1}{2}\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}\frac{x}{2} = \frac{\pi }{2} + k\pi \\\frac{x}{2} = \frac{{2\pi }}{3} + m2\pi \\\frac{x}{2} = - \frac{{2\pi }}{3} + n2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \pi + k2\pi \\x = \frac{{4\pi }}{3} + m4\pi \\x = - \frac{{4\pi }}{3} + n4\pi \end{array} \right.,k,\;m,\;n \in \mathbb{Z}.\end{array}\)
Chọn D.