Phương trình \(\cos 2\left( {x + \frac{\pi }{3}} \right) + 4\cos \left( {\frac{\pi }{6} - x} \right) = \frac{5}{2}\) có nghiệm là:
Giải chi tiết:
\(\begin{array}{l}\;\;\;\;\;\cos 2\left( {x + \frac{\pi }{3}} \right) + 4\cos \left( {\frac{\pi }{6} - x} \right) = \frac{5}{2} \Leftrightarrow \cos 2\left( {x + \frac{\pi }{3}} \right) + 4\cos \left[ {\frac{\pi }{2} - \left( {x + \frac{\pi }{3}} \right)} \right] = \frac{5}{2}\\ \Leftrightarrow \cos 2\left( {x + \frac{\pi }{3}} \right) + 4\sin \left( {x + \frac{\pi }{3}} \right) = \frac{5}{2} \Leftrightarrow 1 - 2{\sin ^2}\left( {x + \frac{\pi }{3}} \right) + 4\sin \left( {x + \frac{\pi }{3}} \right) = \frac{5}{2}\\ \Leftrightarrow - 2{\sin ^2}\left( {x + \frac{\pi }{3}} \right) + 4\sin \left( {x + \frac{\pi }{3}} \right) - \frac{3}{2} = 0\\ \Leftrightarrow \left[ \begin{array}{l}\sin \left( {x + \frac{\pi }{3}} \right) = \frac{3}{2}\;\;(ktm)\\\sin \left( {x + \frac{\pi }{3}} \right) = \frac{1}{2}\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x + \frac{\pi }{3} = \frac{\pi }{6} + k2\pi \\x + \frac{\pi }{3} = \frac{{5\pi }}{6} + m2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = - \frac{\pi }{6} + k2\pi \\x = \frac{\pi }{2} + m2\pi \end{array} \right.\;\;\left( {k,\;m \in Z} \right)\end{array}\)
Chọn A