Phương trình: \(4{\cos ^5}x.\sin x - 4{\sin ^5}x.\cos x = \cos 4x + 1\) có các nghiệm là:
Giải chi tiết:
\(\begin{array}{l}\,\,\,\,\,\,4{\cos ^5}x.\sin x - 4{\sin ^5}x.\cos x = \cos 4x + 1\\ \Leftrightarrow - 2 \cdot \left( {2\sin x\cos x} \right)({\sin ^4}x - {\cos ^4}x) = \cos 4x + 1\\ \Leftrightarrow - 2\sin 2x\left( {{{\sin }^2}x - {{\cos }^2}x} \right)\left( {{{\sin }^2}x + {{\cos }^2}x} \right) = \cos 4x + 1\\ \Leftrightarrow 2\sin 2x\cos 2x = \cos 4x + 1\\ \Leftrightarrow \sin 4x - \cos 4x = 1\\ \Leftrightarrow \sqrt 2 \sin \left( {4x - \frac{\pi }{4}} \right) = 1\\ \Leftrightarrow \sin \left( {4x - \frac{\pi }{4}} \right) = \sin \frac{\pi }{4}\\ \Leftrightarrow \left[ \begin{array}{l}4x - \frac{\pi }{4} = \frac{\pi }{4} + k2\pi \\4x - \frac{\pi }{4} = \pi - \frac{\pi }{4} + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}4x = \frac{\pi }{2} + k2\pi \\4x = \pi + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{8} + \frac{{k\pi }}{2}\\x = \frac{\pi }{4} + \frac{{k\pi }}{2}\end{array} \right.,\;\;k \in \mathbb{Z}.\end{array}\)
Chọn B.