[LỜI GIẢI] Một hộp đựng 11 tấm thẻ được đánh số từ 1 đến 11. Chọn ngẫu nhiên 4 tấm thẻ từ hộp. Gọi P là xác suấ - Tự Học 365
KHỞI ĐỘNG CHO MÙA THI ĐẠI HỌC 2026

Ôn đúng trọng tâm – Học chắc từ hôm nay

BẮT ĐẦU NGAY

Hệ thống lại kiến thức lớp 10–11–12

Một hộp đựng 11 tấm thẻ được đánh số từ 1 đến 11. Chọn ngẫu nhiên 4 tấm thẻ từ hộp. Gọi P là xác suấ

Một hộp đựng 11 tấm thẻ được đánh số từ 1 đến 11. Chọn ngẫu nhiên 4 tấm thẻ từ hộp. Gọi P là xác suấ

Câu hỏi

Nhận biết

Một hộp đựng \(11\) tấm thẻ được đánh số từ \(1\) đến \(11\). Chọn ngẫu nhiên \(4\) tấm thẻ từ hộp. Gọi \(P\) là xác suất để tổng số ghi trên \(4\) tấm thẻ ấy là một số lẻ. Khi đó \(P\) bằng


Đáp án đúng: A

Lời giải của Tự Học 365

Giải chi tiết:

Ta có không gian mẫu : lấy 4 trong 11 số ta được: \(n\left( \Omega  \right) = C_{11}^4 = 330.\)  

Gọi biến cố \(A\): “tổng số ghi trên 4 tấm thẻ ấy là một số lẻ”.

Từ 1 đến 11 có 6 số lẻ và 5 số chẵn.

 Để có tổng của 4 số là một số lẻ ta có 2 trường hợp.

Trường hợp 1: Chọn được 1 thẻ mang số lẻ và 3 thẻ mang số chẵn có: \(C_6^1.C_5^3 = 60\) cách.

Trường hợp 2: Chọn được  thẻ mang số lẻ và  thẻ mang số chẵn có: \(C_6^3.C_5^1 = 100\) cách.

Do đó \(n\left( A \right) = 60 + 100 = 160.\) Vậy \(P\left( A \right) = \frac{{160}}{{330}} = \frac{{16}}{{33}}.\)

Chọn A

Ý kiến của bạn