Một học sinh chứng minh mệnh đề ''\({8^n} + 1\) chia hết cho 7, \(\forall n \in {N^*}\)'' (*) như sau:
+) Giả sử (*) đúng với \(n = k\), tức là \({8^k} + 1\) chia hết cho 7.
+) Ta có:\({8^{k + 1}} + 1 = 8\left( {{8^k} + 1} \right) - 7\), kết hợp với giả thiết \({8^k} + 1\) chia hết cho 7 nên suy ra được \({8^{k + 1}} + 1\) chia hết cho 7. Vậy đẳng thức (*) đúng với mọi \(n \in {N^*}\).
Khẳng định nào sau đây là đúng?
Giải chi tiết:
Thiếu bước 1 là kiểm tra với \(n = 1\), khi đó ta có \({8^1} + 1 = 9\) không chia hết cho 7.
Chọn D.