\(\mathop {\lim }\limits_{x \to \pm \infty } \dfrac{{\sqrt {4{x^2} + x} - 2x}}{{3x + 1}}\)
Giải chi tiết:
\(\mathop {\lim }\limits_{x \to + \infty } \dfrac{{\sqrt {4{x^2} + x} - 2x}}{{3x + 1}} = \mathop {\lim }\limits_{x \to + \infty } \dfrac{{\sqrt {4 + \dfrac{1}{x}} - 2}}{{3 + \dfrac{1}{x}}} = 0\)
\(\mathop {\lim }\limits_{x \to - \infty } \dfrac{{\sqrt {4{x^2} + x} - 2x}}{{3x + 1}} = \mathop {\lim }\limits_{x \to + \infty } \dfrac{{ - \sqrt {4 + \dfrac{1}{x}} - 2}}{{3 + \dfrac{1}{x}}} = \dfrac{{ - 4}}{3}\).
Chọn B.