\(\mathop {\lim }\limits_{x \to \pm \infty } \left( {3x + 2 - \dfrac{{{x^2} - x + 1}}{{x + 2}}} \right)\)
Giải chi tiết:
\(\mathop {\lim }\limits_{x \to \pm \infty } \left( {3x + 2 - \dfrac{{{x^2} - x + 1}}{{x + 2}}} \right)\)
\(\begin{array}{l} = \mathop {\lim }\limits_{x \to \pm \infty } \dfrac{{3{x^2} + 8x + 4 - {x^2} + x - 1}}{{x + 2}}\\ = \mathop {\lim }\limits_{x \to \pm \infty } \dfrac{{2{x^2} + 9x + 3}}{{x + 2}}\\ = \mathop {\lim }\limits_{x \to \pm \infty } \dfrac{{{x^2}\left( {2 + \dfrac{9}{x} + \dfrac{3}{{{x^2}}}} \right)}}{{x\left( {1 + \dfrac{2}{x}} \right)}}\\ = \mathop {\lim }\limits_{x \to \pm \infty } \dfrac{{x\left( {2 + \dfrac{9}{x} + \dfrac{3}{{{x^2}}}} \right)}}{{1 + \dfrac{2}{x}}}\end{array}\)
Ta có \(\mathop {\lim }\limits_{x \to \pm \infty } x = \pm \infty ;\,\,\mathop {\lim }\limits_{x \to \pm \infty } \dfrac{{2 + \dfrac{9}{x} + \dfrac{3}{{{x^2}}}}}{{1 + \dfrac{2}{x}}} = 2 > 0\).
Vậy \(\mathop {\lim }\limits_{x \to \pm \infty } \dfrac{{x\left( {2 + \dfrac{9}{x} + \dfrac{3}{{{x^2}}}} \right)}}{{1 + \dfrac{2}{x}}} = \pm \infty \).
Chọn B.