\(\mathop {\lim }\limits_{x \to \frac{\pi }{4}} \tan 2x.\tan \left( {\frac{\pi }{4} - x} \right)\)
Giải chi tiết:
\(\mathop {\lim }\limits_{x \to \frac{\pi }{4}} \tan 2x\tan \left( {\dfrac{\pi }{4} - x} \right)\)
\(\begin{array}{l} = \mathop {\lim }\limits_{x \to \frac{\pi }{4}} \left[ { - \cot \left( {2x - \dfrac{\pi }{2}} \right)\tan \left( {\dfrac{\pi }{4} - x} \right)} \right]\\ = \mathop {\lim }\limits_{x \to \frac{\pi }{4}} \left[ { - \dfrac{1}{{\tan \left( {2x - \dfrac{\pi }{2}} \right)}}.\tan \left( {\dfrac{\pi }{4} - x} \right)} \right]\\ = \mathop {\lim }\limits_{x \to \frac{\pi }{4}} \left[ { - \dfrac{{2x - \dfrac{\pi }{2}}}{{\tan \left( {2x - \dfrac{\pi }{2}} \right)}}.\dfrac{{\tan \left( {\dfrac{\pi }{4} - x} \right)}}{{\dfrac{\pi }{4} - x}}.\dfrac{1}{{ - 2}}} \right] = \dfrac{1}{2}\end{array}\)
Chọn A.