\(\mathop {\lim }\limits_{x \to + \infty } \dfrac{{{x^3} + 1}}{{{x^2} + 1}}\)
Giải chi tiết:
\(\mathop {\lim }\limits_{x \to + \infty } \dfrac{{{x^3} + 1}}{{{x^2} + 1}}\)
\(\mathop {\lim }\limits_{x \to + \infty } \dfrac{{{x^3} + 1}}{{{x^2} + 1}} = \mathop {\lim }\limits_{x \to + \infty } \dfrac{{{x^3} + x - x}}{{{x^2} + 1}} = \mathop {\lim }\limits_{x \to + \infty } \left( {x - \dfrac{x}{{{x^2} + 1}}} \right)\).
Ta có: \(\mathop {\lim }\limits_{x \to + \infty } \dfrac{x}{{{x^2} + 1}} = 0\), \(\mathop {\lim }\limits_{x \to + \infty } x = + \infty \) nên \(\mathop {\lim }\limits_{x \to + \infty } \dfrac{{{x^3} + 1}}{{{x^2} + 1}} = + \infty \).
Chọn D.