\(\mathop {\lim }\limits_{x \to - \infty } \dfrac{{\sqrt {{x^2} + 2x} - \sqrt {{x^2} + 1} }}{{4{x^2} - 1}}\)
Giải chi tiết:
\(\mathop {\lim }\limits_{x \to - \infty } \dfrac{{\sqrt {{x^2} + 2x} - \sqrt {{x^2} + 1} }}{{4{x^2} - 1}}\)
\(\begin{array}{l} = \mathop {\lim }\limits_{x \to - \infty } \dfrac{{ - x\sqrt {1 + \dfrac{2}{x}} + x\sqrt {1 + \dfrac{1}{{{x^2}}}} }}{{{x^2}\left( {4 - \dfrac{1}{{{x^2}}}} \right)}}\\ = \mathop {\lim }\limits_{x \to - \infty } \dfrac{{ - \sqrt {1 + \dfrac{2}{x}} + \sqrt {1 + \dfrac{1}{{{x^2}}}} }}{{x\left( {4 - \dfrac{1}{{{x^2}}}} \right)}} = 0\end{array}\)
Vậy \(\mathop {\lim }\limits_{x \to - \infty } \dfrac{{\sqrt {{x^2} + 2x} - \sqrt {{x^2} + 1} }}{{4{x^2} - 1}} = 0\).
Chọn C.