\(\mathop {\lim }\limits_{x \to - \infty } \sqrt[3]{{ - 8{x^5} + 6{x^3} + 2}}\)
Giải chi tiết:
\(\mathop {\lim }\limits_{x \to - \infty } \sqrt[3]{{ - 8{x^5} + 6{x^3} + 2}}\)
\(\begin{array}{l} = \mathop {\lim }\limits_{x \to - \infty } \sqrt[3]{{{x^5}\left( { - 8 + \dfrac{6}{{{x^2}}} + \dfrac{2}{{{x^5}}}} \right)}}\\ = \mathop {\lim }\limits_{x \to - \infty } \sqrt[3]{{{x^5}}}\sqrt[3]{{ - 8 + \dfrac{6}{{{x^2}}} + \dfrac{2}{{{x^5}}}}}\end{array}\)
Ta có: \(\mathop {\lim }\limits_{x \to - \infty } \sqrt[3]{{{x^5}}} = - \infty ;\,\,\mathop {\lim }\limits_{x \to - \infty } \left( { - 8 + \dfrac{6}{{{x^2}}} + \dfrac{2}{{{x^5}}}} \right) = - 8 < 0\).
Vậy \(\mathop {\lim }\limits_{x \to - \infty } \sqrt[3]{{ - 8{x^5} + 6{x^3} + 2}} = + \infty \).
Chọn C.