\(\mathop {\lim }\limits_{x \to a} \frac{{{{\sin }^2}x - {{\sin }^2}a}}{{{x^2} - {a^2}}}\)
Giải chi tiết:
\(\mathop {\lim }\limits_{x \to a} \frac{{{{\sin }^2}x - {{\sin }^2}a}}{{{x^2} - {a^2}}} = \mathop {\lim }\limits_{x \to a} \frac{{\frac{{1 - \cos 2x}}{2} - \frac{{1 - \cos 2a}}{2}}}{{{x^2} - {a^2}}}\)
\(\begin{array}{l} = \mathop {\lim }\limits_{x \to a} \frac{{\cos 2a - \cos 2x}}{{2\left( {{x^2} - {a^2}} \right)}} = \mathop {\lim }\limits_{x \to a} \frac{{ - 2\sin \left( {a + x} \right)\sin \left( {a - x} \right)}}{{2\left( {{x^2} - {a^2}} \right)}}\\ = \mathop {\lim }\limits_{x \to a} \frac{{\sin \left( {a + x} \right)\sin \left( {a - x} \right)}}{{\left( {a + x} \right)\left( {a - x} \right)}} = \frac{{\sin 2a}}{{2a}}\end{array}\)
Chọn B.