\(\mathop {\lim }\limits_{x \to - 2} \frac{{{x^2} + 3x + 2}}{{2{x^3} - 19{x^2} - 16x + 60}}\)
Giải chi tiết:
\(\mathop {\lim }\limits_{x \to - 2} \frac{{{x^2} + 3x + 2}}{{2{x^3} - 19{x^2} - 16x + 60}}\) \( = \mathop {\lim }\limits_{x \to - 2} \frac{{\left( {x + 1} \right)\left( {x + 2} \right)}}{{\left( {x + 2} \right)\left( {2x - 3} \right)\left( {x - 10} \right)}}\) \( = \mathop {\lim }\limits_{x \to - 2} \frac{{x + 1}}{{\left( {2x - 3} \right)\left( {x - 10} \right)}} = \frac{{ - 1}}{{84}}\).
Chọn A.