\(\mathop {\lim }\limits_{x \to 2} \dfrac{{\sqrt {{x^2} + 5} - 3}}{{2 - x}}.\)
Giải chi tiết:
\(\begin{array}{l}\mathop {\lim }\limits_{x \to 2} \dfrac{{\sqrt {{x^2} + 5} - 3}}{{2 - x}} = \mathop {\lim }\limits_{x \to 2} \dfrac{{\left( {\sqrt {{x^2} + 5} - 3} \right)\left( {\sqrt {{x^2} + 5} + 3} \right)}}{{\left( {2 - x} \right)\left( {\sqrt {{x^2} + 5} + 3} \right)}} = \mathop {\lim }\limits_{x \to 2} \dfrac{{{x^2} - 4}}{{\left( {2 - x} \right)\left( {\sqrt {{x^2} + 5} + 3} \right)}}\\ = \mathop {\lim }\limits_{x \to 2} \dfrac{{\left( {x - 2} \right)\left( {x + 2} \right)}}{{\left( {2 - x} \right)\left( {\sqrt {{x^2} + 5} + 3} \right)}} = \mathop {\lim }\limits_{x \to 2} \dfrac{{ - x - 2}}{{\sqrt {{x^2} + 5} + 3}} = \dfrac{{ - 4}}{{3 + 3}} = \dfrac{{ - 2}}{3}\end{array}\)