\(\mathop {\lim }\limits_{x \to 1} \frac{{{x^6} - 6x + 5}}{{{{\left( {x - 1} \right)}^2}}}\)
Giải chi tiết:
\(\mathop {\lim }\limits_{x \to 1} \dfrac{{{x^6} - 6x + 5}}{{{{\left( {x - 1} \right)}^2}}}\)
\(\begin{array}{l}
= \mathop {\lim }\limits_{x \to 1} \dfrac{{\left( {x - 1} \right)\left( {{x^5} + {x^4} + {x^3} + {x^2} + x - 5} \right)}}{{\left( {x - 1} \right)\left( {x - 1} \right)}}\\
= \mathop {\lim }\limits_{x \to 1} \dfrac{{{x^5} + {x^4} + {x^3} + {x^2} + x - 5}}{{x - 1}}\\
= \mathop {\lim }\limits_{x \to 1} \dfrac{{\left( {x - 1} \right)\left( {{x^4} + 2{x^3} + 3{x^2} + 4x + 5} \right)}}{{x - 1}}\\
= \mathop {\lim }\limits_{x \to 1} \left( {{x^4} + 2{x^3} + 3{x^2} + 4x + 5} \right) = 15
\end{array}\)
Chọn C.