\(\mathop {\lim }\limits_{x \to - 1} \frac{{{x^5} + 1}}{{{x^7} + 1}}\)
Giải chi tiết:
\(\mathop {\lim }\limits_{x \to - 1} \frac{{{x^5} + 1}}{{{x^7} + 1}}\)
\(\begin{array}{l} = \mathop {\lim }\limits_{x \to - 1} \frac{{\left( {x + 1} \right)\left( {{x^4} - {x^3} + {x^2} - x + 1} \right)}}{{\left( {x + 1} \right)\left( {{x^6} - {x^5} + {x^4} - {x^3} + {x^2} - x + 1} \right)}}\\ = \mathop {\lim }\limits_{x \to - 1} \frac{{{x^4} - {x^3} + {x^2} - x + 1}}{{{x^6} - {x^5} + {x^4} - {x^3} + {x^2} - x + 1}} = \frac{5}{7}\end{array}\)
Chọn B.