\(\mathop {\lim }\limits_{x \to 1} \frac{{{x^{2020}} - 1}}{{{x^{2022}} - 1}}\)
Giải chi tiết:
\(\mathop {\lim }\limits_{x \to 1} \frac{{{x^{2020}} - 1}}{{{x^{2022}} - 1}}\)
\(\begin{array}{l} = \mathop {\lim }\limits_{x \to 1} \frac{{\left( {x - 1} \right)\left( {{x^{2019}} + {x^{2018}} + .... + x + 1} \right)}}{{\left( {x - 1} \right)\left( {{x^{2021}} + {x^{2020}} + ... + x + 1} \right)}}\\ = \mathop {\lim }\limits_{x \to 1} \frac{{{x^{2019}} + {x^{2018}} + .... + x + 1}}{{{x^{2021}} + {x^{2020}} + ... + x + 1}}\\ = \frac{{1 + 1 + 1 + ... + 1}}{{1 + 1 + 1 + .... + 1 + 1}} = \frac{{2020}}{{2022}} = \frac{{1010}}{{1011}}\end{array}\)
Chọn B.