\(\mathop {\lim }\limits_{x \to {1^ + }} \dfrac{{x + 3}}{{{x^2} - 4x + 3}}\)
Giải chi tiết:
\(\mathop {\lim }\limits_{x \to {1^ + }} \dfrac{{x + 3}}{{{x^2} - 4x + 3}} = \mathop {\lim }\limits_{x \to {1^ + }} \dfrac{{x + 3}}{{\left( {x - 1} \right)\left( {x - 3} \right)}}\)
Vì \(\left\{ \begin{array}{l}\mathop {\lim }\limits_{x \to {1^ + }} \dfrac{{x + 3}}{{x - 3}} = \dfrac{{1 + 3}}{{1 - 3}} = - 2\\\mathop {\lim }\limits_{x \to {1^ + }} \left( {x - 1} \right) = 0\\x - 1 > 0\,\,\forall x > 1\end{array} \right.\) nên \(\mathop {\lim }\limits_{x \to {1^ + }} \dfrac{{x + 3}}{{\left( {x - 1} \right)\left( {x - 3} \right)}} = - \infty \).
Vậy \(\mathop {\lim }\limits_{x \to {1^ + }} \dfrac{{x + 3}}{{{x^2} - 4x + 3}} = - \infty \).
Chọn D.