\(\mathop {\lim }\limits_{x \to 1} \dfrac{{\sqrt {2x + 2} - \sqrt {3x + 1} }}{{x - 1}}\)
Giải chi tiết:
\(\mathop {\lim }\limits_{x \to 1} \dfrac{{\sqrt {2x + 2} - \sqrt {3x + 1} }}{{x - 1}}\)
\(\begin{array}{l} = \mathop {\lim }\limits_{x \to 1} \dfrac{{\left( {\sqrt {2x + 2} - \sqrt {3x + 1} } \right)\left( {\sqrt {2x + 2} + \sqrt {3x + 1} } \right)}}{{\left( {x - 1} \right)\left( {\sqrt {2x + 2} + \sqrt {3x + 1} } \right)}}\\ = \mathop {\lim }\limits_{x \to 1} \dfrac{{2x + 2 - 3x - 1}}{{\left( {x - 1} \right)\left( {\sqrt {2x + 2} + \sqrt {3x + 1} } \right)}}\\ = \mathop {\lim }\limits_{x \to 1} \dfrac{{1 - x}}{{\left( {x - 1} \right)\left( {\sqrt {2x + 2} + \sqrt {3x + 1} } \right)}}\\ = \mathop {\lim }\limits_{x \to 1} \dfrac{{ - 1}}{{\sqrt {2x + 2} + \sqrt {3x + 1} }}\\ = \dfrac{{ - 1}}{{\sqrt {2 + 2} + \sqrt {3 + 1} }} = \dfrac{{ - 1}}{4}\end{array}\)
Chọn D.