\(\mathop {\lim }\limits_{x \to 1} \frac{{\sqrt {{x^3} + 3x} - 2}}{{\sqrt {{x^2} + x + 7} - 3}}\)
Giải chi tiết:
\(\mathop {\lim }\limits_{x \to 1} \frac{{\sqrt {{x^3} + 3x} - 2}}{{\sqrt {{x^2} + x + 7} - 3}}\)
\(\begin{array}{l} = \mathop {\lim }\limits_{x \to 1} \frac{{\left( {\sqrt {{x^3} + 3x} - 2} \right)\left( {\sqrt {{x^3} + 3x} + 2} \right)\left( {\sqrt {{x^2} + x + 7} + 3} \right)}}{{\left( {\sqrt {{x^2} + x + 7} - 3} \right)\left( {\sqrt {{x^2} + x + 7} + 3} \right)\left( {\sqrt {{x^3} + 3x} + 2} \right)}}\\ = \mathop {\lim }\limits_{x \to 1} \frac{{\left( {{x^3} + 3x - 4} \right)\left( {\sqrt {{x^2} + x + 7} + 3} \right)}}{{\left( {{x^2} + x + 7 - 9} \right)\left( {\sqrt {{x^3} + 3x} + 2} \right)}}\\ = \mathop {\lim }\limits_{x \to 1} \frac{{\left( {x - 1} \right)\left( {{x^2} + x + 4} \right)\left( {\sqrt {{x^2} + x + 7} + 3} \right)}}{{\left( {x - 1} \right)\left( {x + 2} \right)\left( {\sqrt {{x^3} + 3x} + 2} \right)}}\\ = \mathop {\lim }\limits_{x \to 1} \frac{{\left( {{x^2} + x + 4} \right)\left( {\sqrt {{x^2} + x + 7} + 3} \right)}}{{\left( {x + 2} \right)\left( {\sqrt {{x^3} + 3x} + 2} \right)}}\\ = \frac{{6.\left( {3 + 3} \right)}}{{3.\left( {2 + 2} \right)}} = \frac{{36}}{{12}} = 3\end{array}\)
Chọn C.