\(\mathop {\lim }\limits_{x \to 1} \frac{{\sqrt {3x + 1} - \sqrt {x + 3} }}{{{x^3} - 1}}\)
Giải chi tiết:
\(\mathop {\lim }\limits_{x \to 1} \frac{{\sqrt {3x + 1} - \sqrt {x + 3} }}{{{x^3} - 1}}\)
\(\begin{array}{l} = \mathop {\lim }\limits_{x \to 1} \frac{{\left( {\sqrt {3x + 1} - \sqrt {x + 3} } \right)\left( {\sqrt {3x + 1} + \sqrt {x + 3} } \right)}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)\left( {\sqrt {3x + 1} + \sqrt {x + 3} } \right)}}\\ = \mathop {\lim }\limits_{x \to 1} \frac{{2x - 2}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)\left( {\sqrt {3x + 1} + \sqrt {x + 3} } \right)}}\\ = \mathop {\lim }\limits_{x \to 1} \frac{2}{{\left( {{x^2} + x + 1} \right)\left( {\sqrt {3x + 1} + \sqrt {x + 3} } \right)}}\\ = \frac{2}{{3.4}} = \frac{1}{6}\end{array}\)
Chọn D.