\( \mathop { \lim } \limits_{x \to 1} \frac{{ \sqrt {2x + 7} + x - 4}}{{{x^3} - 4{x^2} + 3}} \)
Giải chi tiết:
\(\mathop {\lim }\limits_{x \to 1} \frac{{\sqrt {2x + 7} + x - 4}}{{{x^3} - 4{x^2} + 3}}\)
\(\begin{array}{l} = \mathop {\lim }\limits_{x \to 1} \frac{{\sqrt {2x + 7} - 3 + x - 1}}{{\left( {x - 1} \right)\left( {{x^2} - 3x - 3} \right)}}\\ = \mathop {\lim }\limits_{x \to 1} \frac{{\frac{{\left( {\sqrt {2x + 7} - 3} \right)\left( {\sqrt {2x + 7} + 3} \right)}}{{\sqrt {2x + 7} + 3}} + x - 1}}{{\left( {x - 1} \right)\left( {{x^2} - 3x - 3} \right)}}\\ = \mathop {\lim }\limits_{x \to 1} \frac{{\frac{{2x - 2}}{{\sqrt {2x + 7} + 3}} + x - 1}}{{\left( {x - 1} \right)\left( {{x^2} - 3x - 3} \right)}}\\ = \mathop {\lim }\limits_{x \to 1} \frac{{\left( {x - 1} \right)\left[ {\frac{2}{{\sqrt {2x + 7} + 3}} + 1} \right]}}{{\left( {x - 1} \right)\left( {{x^2} - 3x - 3} \right)}}\\ = \mathop {\lim }\limits_{x \to 1} \frac{{\frac{2}{{\sqrt {2x + 7} + 3}} + 1}}{{{x^2} - 3x - 3}} = \frac{{\frac{2}{{3 + 3}} + 1}}{{ - 5}} = - \frac{4}{{15}}\end{array}\)
Chọn D.