\(\mathop {\lim }\limits_{x \to 1} \frac{{2x - \sqrt {3x + 1} }}{{{x^2} - 1}}\)
Giải chi tiết:
\(\mathop {\lim }\limits_{x \to 1} \frac{{2x - \sqrt {3x + 1} }}{{{x^2} - 1}}\)
\(\begin{array}{l} = \mathop {\lim }\limits_{x \to 1} \frac{{\left( {2x - \sqrt {3x + 1} } \right)\left( {2x + \sqrt {3x + 1} } \right)}}{{\left( {x - 1} \right)\left( {x + 1} \right)\left( {2x + \sqrt {3x + 1} } \right)}}\\ = \mathop {\lim }\limits_{x \to 1} \frac{{4{x^2} - 3x - 1}}{{\left( {x - 1} \right)\left( {x + 1} \right)\left( {2x + \sqrt {3x + 1} } \right)}}\\ = \mathop {\lim }\limits_{x \to 1} \frac{{\left( {x - 1} \right)\left( {4x + 1} \right)}}{{\left( {x - 1} \right)\left( {x + 1} \right)\left( {2x + \sqrt {3x + 1} } \right)}}\\ = \mathop {\lim }\limits_{x \to 1} \frac{{4x + 1}}{{\left( {x + 1} \right)\left( {2x + \sqrt {3x + 1} } \right)}}\\ = \frac{5}{{2.4}} = \frac{5}{8}\end{array}\)
Chọn C.