\(\mathop {\lim }\limits_{x \to 0} \frac{{\sin x.\sin 2x...\sin nx}}{{n!{x^n}}}\,\,\,\left( {n \in {\mathbb{N}^*}} \right)\)
Giải chi tiết:
\(\mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x.\sin 2x...\sin nx}}{{n!{x^n}}}\,\,\,\left( {n \in {\mathbb{N}^*}} \right)\)
\(\begin{array}{l} = \mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x}}{x}.\dfrac{{\sin 2x}}{{2x}}.\dfrac{{\sin 3x}}{{3x}}...\dfrac{{\sin nx}}{{nx}}\\ = 1.1.1...1 = 1\end{array}\)