\(\mathop {\lim }\limits_{x \to 0} \frac{{\sin 6x + \sin 4x}}{{\sin 3x + \sin 5x}}\)
Giải chi tiết:
\(\mathop {\lim }\limits_{x \to 0} \frac{{\sin 6x + \sin 4x}}{{\sin 3x + \sin 5x}} = \mathop {\lim }\limits_{x \to 0} \frac{{2\sin 5x\cos x}}{{2\sin 4x\cos x}}\)\( = \mathop {\lim }\limits_{x \to 0} \frac{{\sin 5x}}{{\sin 4x}} = \mathop {\lim }\limits_{x \to 0} \left( {\frac{{\sin 5x}}{{5x}}.\frac{{4x}}{{\sin 4x}}.\frac{5}{4}} \right) = \frac{5}{4}\).
Chọn D.