Hàm số \(y = \dfrac{{ \sqrt {{x^2} + 2x + 3} }}{x} \) có đạo hàm \(y' = \dfrac{{ax + b}}{{{x^2} \sqrt {{x^2} + 2x + 3} }} \). Tìm \( \max \left \{ {a,b} \right \}. \)
Giải chi tiết:
Ta có:
\(\begin{array}{l}y' = \dfrac{{\dfrac{{2x + 2}}{{2\sqrt {{x^2} + 2x + 3} }}.x - \sqrt {{x^2} + 2x + 3} }}{{{x^2}}}\\y' = \dfrac{{{x^2} + x - {x^2} - 2x - 3}}{{{x^2}\sqrt {{x^2} + 2x + 3} }} = \dfrac{{ - x - 3}}{{{x^2}\sqrt {{x^2} + 2x + 3} }}\\ \Rightarrow \left\{ \begin{array}{l}a = - 1\\b = - 3\end{array} \right. \Rightarrow \max \left\{ {a;b} \right\} = \max \left\{ { - 1; - 3} \right\} = - 1\end{array}\)
Chọn B.