Giới hạn \(\mathop {\lim }\limits_{x \to + \infty } \left( {\sqrt {4{x^2} + 3x} - \sqrt[3]{{8{x^3} + 2{x^2} + 1}}} \right)\) bằng:
Giải chi tiết:
Với \(x > 0\) :
\(\begin{array}{l}\sqrt {4{x^2} + 3x} - \sqrt[3]{{8{x^3} + 2{x^2} + 1}} = \left( {\sqrt {4{x^2} + 3x} - 2x} \right) - \left( {\sqrt[3]{{8{x^3} + 2{x^2} + 1}} - 2x} \right)\\ = \frac{{\left( {\sqrt {4{x^2} + 3x} - 2x} \right)\left( {\sqrt {4{x^2} + 3x} + 2x} \right)}}{{\sqrt {4{x^2} + 3x} + 2x}} - \frac{{\left( {\sqrt[3]{{8{x^3} + 2{x^2} + 1}} - 2x} \right)\left( {4{x^2} + 2x\sqrt[3]{{8{x^3} + 2{x^2} + 1}} + \sqrt[3]{{{{\left( {8{x^3} + 2{x^2} + 1} \right)}^2}}}} \right)}}{{4{x^2} + 2x\sqrt[3]{{8{x^3} + 2{x^2} + 1}} + \sqrt[3]{{{{\left( {8{x^3} + 2{x^2} + 1} \right)}^2}}}}}\\ = \frac{{3x}}{{\sqrt {4{x^2} + 3x} + 2x}} - \frac{{2{x^2} + 1}}{{4{x^2} + 2x\sqrt[3]{{8{x^3} + 2{x^2} + 1}} + \sqrt[3]{{{{\left( {8{x^3} + 2{x^2} + 1} \right)}^2}}}}}.\end{array}\)
Khi đó ta có:
\(\begin{array}{l}\mathop {\lim }\limits_{x \to + \infty } = \left( {\sqrt {4{x^2} + 3x} - \sqrt[3]{{8{x^3} + 2{x^2} + 1}}} \right) = \mathop {\lim }\limits_{x \to + \infty } \left( {\frac{{3x}}{{\sqrt {4{x^2} + 3x} + 2x}} - \frac{{2{x^2} + 1}}{{4{x^2} + 2x\sqrt[3]{{8{x^3} + 2{x^2} + 1}} + \sqrt[3]{{{{\left( {8{x^3} + 2{x^2} + 1} \right)}^2}}}}}} \right)\\ = \mathop {\lim }\limits_{x \to + \infty } \left( {\frac{3}{{\sqrt {4 + \frac{3}{x}} + 2}} - \frac{{2 + \frac{1}{{{x^2}}}}}{{4 + 2\sqrt[3]{{8 + \frac{2}{x} + \frac{1}{{{x^3}}}}} + \sqrt[3]{{{{\left( {8 + \frac{2}{x} + \frac{1}{{{x^3}}}} \right)}^2}}}}}} \right) = \frac{3}{{2 + 2}} - \frac{2}{{4 + 4 + 4}} = \frac{7}{{12}}\end{array}\)
Chọn B.