Giới hạn của hàm số \(f \left( x \right) = {{ \left( {2{x^2} + 1} \right) \left( {2{x^3} + x} \right)} \over { \left( {2{x^4} + x} \right) \left( {x + 1} \right)}} \) khi x tiến đến \( - \infty \)
Giải chi tiết:
\(\begin{array}{l}
\mathop {\lim }\limits_{x \to - \infty } f\left( x \right) = \mathop {\lim }\limits_{x \to - \infty } \dfrac{{\left( {2{x^2} + 1} \right)\left( {2{x^3} + x} \right)}}{{\left( {2{x^4} + x} \right)\left( {x + 1} \right)}}\\
\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \mathop {\lim }\limits_{x \to - \infty } \dfrac{{\dfrac{{2{x^2} + 1}}{{{x^2}}}.\dfrac{{2{x^3} + x}}{{{x^3}}}}}{{\dfrac{{2{x^4} + x}}{{{x^4}}}.\dfrac{{x + 1}}{x}}}\\
\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \mathop {\lim }\limits_{x \to - \infty } \dfrac{{\left( {2 + \dfrac{1}{{{x^2}}}} \right)\left( {2 + \dfrac{1}{{{x^2}}}} \right)}}{{\left( {2 + \dfrac{1}{{{x^3}}}} \right)\left( {1 + \dfrac{1}{x}} \right)}}\\
\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \mathop {\lim }\limits_{x \to - \infty } \dfrac{{2.2}}{{2.1}} = 2
\end{array}\)
Chọn B.