Giải phương trình \({\sin ^2}x = \sin 3x + \cos x\left( {\cos x - 1} \right)\)
Cách giải nhanh bài tập này
\(\begin{array}{l}
\,\,\,\,\,\,\sin 3x + {\cos ^2}x - {\sin ^2}x - \cos x = 0\\
\Leftrightarrow \sin 3x + \cos 2x - \cos x = 0\\
\Leftrightarrow \sin 3x - 2\sin \frac{{3x}}{2}\sin \frac{x}{2} = 0\\
\Leftrightarrow 2\sin \frac{{3x}}{2}\cos \frac{{3x}}{2} - 2\sin \frac{{3x}}{2}\sin \frac{x}{2} = 0\\
\Leftrightarrow \sin \frac{{3x}}{2}\left( {\cos \frac{{3x}}{2} - \sin \frac{x}{2}} \right) = 0
\end{array}\)
Với \(\sin \frac{{3x}}{2} = 0 \Rightarrow x = \frac{{2k\pi }}{3}\,\,\left( {k \in Z} \right)\)
Với \(\cos \frac{{3x}}{2} - \sin \frac{x}{2} = 0 \Leftrightarrow \cos \frac{{3x}}{2} - \cos \left( {\frac{\pi }{2} - \frac{x}{2}} \right) = 0\)
\( \Leftrightarrow \left[ {\begin{array}{*{20}{c}}
{\frac{{3x}}{2} = \frac{\pi }{2} - \frac{x}{2} + k2\pi }\\
{\frac{{3x}}{2} = \frac{x}{2} - \frac{\pi }{2} + k2\pi }
\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}
{x = \frac{\pi }{4} + k\pi }\\
{x = - \frac{\pi }{2} + k2\pi }
\end{array}} \right.\,\,\left( {k \in Z} \right)\)