Giải phương trình: \(\sqrt 3 \left( {\cos 2x + \sin 3x} \right) = \sin 2x + \cos 3x.\)
Giải chi tiết:
\(\begin{array}{l}{\rm{ }}\sqrt 3 \left( {\cos 2x + \sin 3x} \right) = \sin 2x + \cos 3x.\\ \Leftrightarrow \sqrt 3 \cos 2x - sin2x = cos3x - \sqrt 3 \sin 3x\\ \Leftrightarrow \frac{{\sqrt 3 }}{2}\cos 2x - \frac{1}{2}sin2x = \frac{1}{2}cos3x - \frac{{\sqrt 3 }}{2}\sin 3x\\ \Leftrightarrow \sin \frac{\pi }{3}\cos 2x - \cos \frac{\pi }{3}\sin 2x = \sin \frac{\pi }{6}\cos 3x - \cos \frac{\pi }{6}\sin 3x\\ \Leftrightarrow \sin \left( {\frac{\pi }{3} - 2x} \right) = \sin \left( {\frac{\pi }{6} - 3x} \right)\\ \Leftrightarrow \left[ \begin{array}{l}\frac{\pi }{3} - 2x = \frac{\pi }{6} - 3x + k2\pi \\\frac{\pi }{3} - 2x = \pi - \left( {\frac{\pi }{6} - 3x} \right) + k2\pi \end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}x = - \frac{\pi }{6} + k2\pi \\x = - \frac{\pi }{{10}} + \frac{{k2\pi }}{5}\end{array} \right.\,\,\,\left( {k \in \mathbb{Z}} \right)\end{array}\)
Chọn A.