Giải các phương trình sau:
1) \( \sin x - \sqrt 3 \cos \left( {x + \pi } \right) = 2 \sin 2x \)
2) \(5{ \sin ^2}x - 2 \sin 2x + 7{ \cos ^2}x = 4 \)
Giải chi tiết:
\(\begin{gathered} 1)\,\,\sin x - \sqrt 3 \cos \left( {x + \pi } \right) = 2\sin 2x \hfill \\ \Leftrightarrow \sin x + \sqrt 3 \cos x = 2\sin 2x \hfill \\ \Leftrightarrow \frac{1}{2}\sin x + \frac{{\sqrt 3 }}{2}\cos x = \sin 2x \hfill \\ \Leftrightarrow \sin x\cos \frac{\pi }{3} + \cos x\sin \frac{\pi }{3} = \sin 2x \hfill \\ \Leftrightarrow \sin \left( {x + \frac{\pi }{3}} \right) = \sin 2x \hfill \\ \Leftrightarrow \left[ \begin{gathered} x + \frac{\pi }{3} = 2x + k2\pi \hfill \\ x + \frac{\pi }{3} = \pi - 2x + k2\pi \hfill \\ \end{gathered} \right. \Leftrightarrow \left\{ \begin{gathered} x = \frac{\pi }{3} + k2\pi \hfill \\ x = \frac{{2\pi }}{9} + \frac{{k2\pi }}{3} \hfill \\ \end{gathered} \right.\,\,\left( {k \in Z} \right) \hfill \\ \end{gathered} \)
Vậy \(x \in \left\{ {\frac{\pi }{3} + k2\pi ;\,\,\frac{{2\pi }}{9} + \frac{{k2\pi }}{3}|k \in Z} \right\}\).
\(2)\,\,5{\sin ^2}x - 2\sin 2x + 7{\cos ^2}x = 4 \Leftrightarrow 5{\sin ^2}x - 4\sin x\cos x + 7{\cos ^2}x = 4\)
TH1: \(\cos x = 0 \Leftrightarrow {\sin ^2}x = 1 \Leftrightarrow 5 = 4\) (vô nghiệm)
TH2: \(\cos x \ne 0 \Leftrightarrow x \ne \frac{\pi }{2} + k\pi \)
Chia cả 2 vế của phương trình cho \({\cos ^2}x\) ta được:
\(\begin{gathered} 5{\tan ^2}x - 4\tan x + 7 = 4\left( {1 + {{\tan }^2}x} \right) \hfill \\ \Leftrightarrow {\tan ^2}x - 4\tan x + 3 = 0 \hfill \\ \Leftrightarrow \left[ \begin{gathered} \tan x = 1 \hfill \\ \tan x = 3 \hfill \\ \end{gathered} \right. \Leftrightarrow \left[ \begin{gathered} x = \frac{\pi }{4} + k\pi \hfill \\ x = \arctan 3 + k\pi \hfill \\ \end{gathered} \right.\,\,\left( {k \in Z} \right)\,\left( {tm} \right) \hfill \\ \end{gathered} \)
Vậy \(x \in \left\{ {\frac{\pi }{4} + k\pi ;\arctan 3 + k\pi |k \in Z} \right\}\).