Giá trị của \(D = \lim \left( {\sqrt {{n^2} + 2n} - \sqrt[3]{{{n^3} + 2{n^2}}}} \right)\) bằng:
Giải chi tiết:
Ta có: \(D = \lim \left( {\sqrt {{n^2} + 2n} - \sqrt[3]{{{n^3} + 2{n^2}}}} \right)\)
\(\begin{array}{l} = \lim \left( {\sqrt {{n^2} + 2n} - n} \right) - \lim \left( {\sqrt[3]{{{n^3} + 2{n^2}}} - n} \right)\\ = \lim \frac{{\left( {\sqrt {{n^2} + 2n} - n} \right)\left( {\sqrt {{n^2} + 2n} + n} \right)}}{{\sqrt {{n^2} + 2n} + n}} - \lim \frac{{\left( {\sqrt[3]{{{n^3} + 2{n^2}}} - n} \right)\left( {\sqrt[3]{{{{\left( {{n^3} + 2{n^2}} \right)}^2}}} + n\sqrt[3]{{{n^3} + 2{n^2}}} + n} \right)}}{{\sqrt[3]{{{{\left( {{n^3} + 2{n^2}} \right)}^2}}} + n\sqrt[3]{{{n^3} + 2{n^2}}} + n}}\\ = \lim \frac{{{n^2} + 2n - {n^2}}}{{\sqrt {{n^2} + 2n} + n}} - \lim \frac{{{n^3} + 2{n^2} - {n^3}}}{{\sqrt[3]{{{{\left( {{n^3} + 2{n^2}} \right)}^2}}} + n\sqrt[3]{{{n^3} + 2{n^2}}} + n}}\\ = \lim \frac{{2n}}{{\sqrt {{n^2} + 2n} + n}} - \lim \frac{{2{n^2}}}{{\sqrt[3]{{{{\left( {{n^3} + 2{n^2}} \right)}^2}}} + n\sqrt[3]{{{n^3} + 2{n^2}}} + {n^2}}}\\ = \lim \frac{2}{{\sqrt {1 + \frac{2}{n}} + 1}} - \lim \frac{2}{{\sqrt[3]{{{{\left( {1 + \frac{2}{n}} \right)}^2}}} + \sqrt[3]{{1 + \frac{2}{n}}} + 1}} = \frac{2}{2} - \frac{2}{{1 + 1 + 1}} = \frac{1}{3}.\end{array}\)
Chọn C.