Giá trị của \(C = \lim \frac{{{{\left( {2{n^2} + 1} \right)}^4}{{\left( {n + 2} \right)}^9}}}{{{n^{17}} + 1}}\) bằng:
Giải chi tiết:
Ta có: \(C = \lim \frac{{{n^8}{{\left( {2 + \frac{1}{{{n^2}}}} \right)}^4}.{n^9}{{\left( {1 + \frac{2}{n}} \right)}^9}}}{{{n^{17}}\left( {1 + \frac{1}{{{n^{17}}}}} \right)}} = \lim \frac{{{{\left( {2 + \frac{1}{{{n^2}}}} \right)}^4}.{{\left( {1 + \frac{2}{n}} \right)}^9}}}{{1 + \frac{1}{{{n^{17}}}}}} = \frac{{{2^4}.1}}{1} = 16.\)
Chọn C.