[LỜI GIẢI] Đạo hàm của hàm số y = tan ^2x - cot^2x là: - Tự Học 365
LUYỆN TẬP TRẮC NGHIỆM 50000+ CÂU HỎI

DÀNH CHO MỌI LỚP 6 ĐẾN 12

TRUY CẬP NGAY
XEM CHI TIẾT

Đạo hàm của hàm số y = tan ^2x - cot^2x là:

Đạo hàm của hàm số y = tan ^2x - cot^2x là:

Câu hỏi

Nhận biết

Đạo hàm của hàm số \(y = {\tan ^2}x - co{t^2}x\) là:


Đáp án đúng: A

Lời giải của Tự Học 365

Giải chi tiết:

\(\eqalign{  & y = {\tan ^2}x - co{t^2}x = \left( {\tan x - \cot x} \right)\left( {\tan x + \cot x} \right)  \cr   & y' = \left( {\tan x - \cot x} \right)'\left( {\tan x + \cot x} \right) + \left( {\tan x - \cot x} \right)\left( {\tan x + \cot x} \right)'  \cr   & y' = \left( {{1 \over {{{\cos }^2}x}} + {1 \over {{{\sin }^2}x}}} \right)\left( {\tan x + \cot x} \right) + \left( {\tan x - \cot x} \right)\left( {{1 \over {{{\cos }^2}x}} - {1 \over {{{\sin }^2}x}}} \right)  \cr   & y' = {{\tan x} \over {{{\cos }^2}x}} + {{\cot x} \over {{{\cos }^2}x}} + {{\tan x} \over {{{\sin }^2}x}} + {{\cot x} \over {{{\sin }^2}x}} + {{\tan x} \over {{{\cos }^2}x}} - {{\tan x} \over {{{\sin }^2}x}} - {{\cot x} \over {{{\cos }^2}x}} + {{\cot x} \over {{{\sin }^2}x}}  \cr   & y' = 2{{\tan x} \over {{{\cos }^2}x}} + 2{{\cot x} \over {{{\sin }^2}x}} \cr} \)

Chọn A.

Ý kiến của bạn