\( \dfrac{{ \cos \left( { \dfrac{{7 \pi }}{2} - 2x} \right) - \sqrt 3 \cos \left( {2x - 3 \pi } \right) + 2 \cos x}}{{1 - 2 \sin \,x}} = 0 \)
Giải chi tiết:
ĐKXĐ: \(1 - 2\sin x \ne 0 \Leftrightarrow \sin x \ne \dfrac{1}{2} \Leftrightarrow \left\{ \begin{array}{l}x \ne \dfrac{\pi }{6} + k2\pi \\x \ne \dfrac{{5\pi }}{6} + k2\pi \end{array} \right.,k \in \mathbb{Z}\)
Khi đó:
\(\begin{array}{l}\dfrac{{\cos \left( {\dfrac{{7\pi }}{2} - 2x} \right) - \sqrt 3 \cos \left( {2x - 3\pi } \right) + 2\cos x}}{{1 - 2\sin \,x}} = 0\\ \Leftrightarrow \cos \left( {3\pi + \dfrac{\pi }{2} - 2x} \right) - \sqrt 3 \cos \left( {2x - 3\pi } \right) + 2\cos x = 0\\ \Leftrightarrow - \cos \left( {\dfrac{\pi }{2} - 2x} \right) + \sqrt 3 \cos 2x + 2\cos x = 0\\ \Leftrightarrow - \sin 2x + \sqrt 3 \cos 2x + 2\cos x = 0\\ \Leftrightarrow \sin 2x - \sqrt 3 \cos 2x = 2\cos x\\ \Leftrightarrow \dfrac{1}{2}\sin 2x - \dfrac{{\sqrt 3 }}{2}\cos 2x = \cos x\\ \Leftrightarrow \sin \dfrac{\pi }{6}.\sin 2x - \cos \dfrac{\pi }{6}.\cos 2x = \cos x\\ \Leftrightarrow - \cos \left( {2x + \dfrac{\pi }{6}} \right) = \cos x \Leftrightarrow \cos \left( {2x - \dfrac{{5\pi }}{6}} \right) = \cos x\\ \Leftrightarrow \left[ \begin{array}{l}2x - \dfrac{{5\pi }}{6} = x + k2\pi \\2x - \dfrac{{5\pi }}{6} = - x + k2\pi \end{array} \right.,k \in \mathbb{Z} \Leftrightarrow \left[ \begin{array}{l}x = \dfrac{{5\pi }}{6} + k2\pi \\x = \dfrac{{5\pi }}{{18}} + k\dfrac{{2\pi }}{3}\end{array} \right.,k \in \mathbb{Z}\end{array}\)
Kết hợp ĐKXĐ, suy ra: Phương trình đã cho có nghiệm \(x = \dfrac{{5\pi }}{{18}} + k\dfrac{{2\pi }}{3},k \in \mathbb{Z}\).