Cho \(y = \sin 2x - 2 \cos x \). Giải phương trình \(y' = 0 \).
Giải chi tiết:
Ta có \(y' = 2\cos 2x + 2\sin x\).
\(\begin{array}{l}y' = 0 \Leftrightarrow 2\cos 2x + 2\sin x = 0 \Leftrightarrow \cos 2x + \sin x = 0\\ \Leftrightarrow \cos 2x = - \sin x = \cos \left( {x + \dfrac{\pi }{2}} \right)\\ \Leftrightarrow \left[ \begin{array}{l}2x = x + \dfrac{\pi }{2} + k2\pi \\2x = - x - \dfrac{\pi }{2} + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \dfrac{\pi }{2} + k2\pi \\x = \dfrac{{ - \pi }}{6} + \dfrac{{k2\pi }}{3}\end{array} \right.\,\,\left( {k \in \mathbb{Z}} \right)\end{array}\)