Cho tứ diện \(ABCD\) có\(AC = a,\,\,BD = 3a\). Gọi \(M\) và \(N\) lần lượt là trung điểm của \(AD\) và \(BC.\) Biết \(AC\) vuông góc với\(BD\). Tính độ dài đoạn thẳng \(MN\) theo \(a.\)
Giải chi tiết:

Gọi \(P\) là trung điểm của \(AB\).
Ta có: \(PM,\,\,PN\) lần lượt là đường trung bình của \(\Delta ACD,\,\,\Delta ABC\) nên \(PM = \dfrac{1}{2}BD = \dfrac{{3a}}{2}\), \(PN = \dfrac{1}{2}AC = \dfrac{a}{2}\) và \(\left\{ \begin{array}{l}PM\parallel BD\\PN\parallel AC\end{array} \right.\).
Mà \(AC \bot BD\,\,\left( {gt} \right)\) nên \(PM \bot PN\), do đó tam giác \(PMN\) vuông tại \(P\).
Áp dụng định lí Pytago ta có:
\(MN = \sqrt {P{M^2} + P{N^2}} \) \( = \sqrt {\dfrac{{9{a^2}}}{4} + \dfrac{{{a^2}}}{4}} = \dfrac{{a\sqrt {10} }}{2}\).
Chọn C.